9.Shaping Space

The spatial arrangement of notes in Tinderbox maps can express
both explicit and implicit relationships among those notes. Some
of those relationships are evident from the outset, while others
emerge over time, and some relations we once thought clear and
useful may turn out to be muddled or unhelpful. Throughout the
life of a Tinderbox project, map views provide a way to visualize a
section of our growing and changing collection of notes.

All kinds of concept visualizations set out to find a spatial
arrangement that communicates structure and relationships
among ideas. Timelines, for example, arrange a list of events, using
intervals of space to describe intervals of time34. Chart views take
the hierarchical structure of a Tinderbox document and arrange it
in a genealogical format. A variety of experimental concept
visualizations have been proposed, ranging from cone maps and
three-dimensional cityscapes to hyperbolic browsers.

Tree charts and timelines determine their layout from the
properties of each note, while maps rely on you to choose a
position that makes sense. If a timeline describes the advancement
of astronomy in the 20th century, then an event in 1950 will
appear near its center. The Tinderbox map, on the other hand,

34 For a richly illustrated overview of timelines through history, see D. Rosenberg
and A. Grafton, Cartographies of time. Princeton Architectural Press. 2010

158 The Tinderbox Way

avoids automatic layout: when you create a note, you put it where
you want it. If you later decide that it belongs somewhere else, you
will move it where it belongs. Tinderbox maps acquire meaning
because you arrange them meaningfully.

Lining Up

In the earliest Tinderbox experiments, as in early Storyspace, you
could place any note anywhere. This gave users complete freedom,
but (for some purposes) that freedom was not always convenient.
Rectangles are common in the Tinderbox map, and people
frequent want adjacent rectangles to be exactly aligned.
Positioning notes by hand often leaves small errors. Further, since
any location is equally valid, placing a note at $Xpos=3.473206 is

neither more or less common than placing one at $Xpos=1.

Tinderbox for many years imposed a grid on the plane of the map,
requiring note positions to fall at intervals of 2 or % of a map unit.
If you dropped a note at $Xpos=3.473208, it would “snap” to
$Xpos=3.5. If you dragged a resize handle to set the note’s height to
1.0937, its $Height would be rounded to 1.0 .

Unwanted alignments imposed by this grid sometimes became a
nuisance. Sometimes you didn’t want a note to align with its
neighbors, but the coarse grid forced the alignment anyway. Over
time, Tinderbox adopted a finer grid to provide more flexibility,
even though this made it slightly harder to align notes. We began
to explore various escape hatches to allow specific notes to ignore

the grid entirely.

The Tinderbox Way 159

Shaping Space
Tinderbox 7 adopts an entirely
new approach to regulating
geometric relationships among
notes. Instead of imposing a

global grid to which all notes
have to adhere, it tries to

recognize local geometries and to
apply those geometries to notes
created in or moved into the

locale.

Here, for example, we are dragging a wide, rectangular note
beneath a smaller note. Because the horizontal centers of the two
notes are nearly aligned, Tinderbox displays a blue guideline and,
when the mouse is released, will snap the position of the dragged
note so the two centers are
aligned exactly. The upper note
exerts a sort of gravitational
force that leads the dragged
note to align with its center.
Similarly, Tinderbox will
recognize when the edges of

the notes are nearly aligned.

An even more intriguing

example appears when we drag

a note—in this case a light gray

= 4

note—beneath two other " - »

notes. Here, none of the edges

160 The Tinderbox Way

align, but Tinderbox notices that the vertical space between this
note and the note above it is nearly the same as the space between
that note and the topmost note. Tinderbox again draws a guide,
and when the mouse is released it will adjust the note position so
the vertical spacing is identical. The presence of two nearby notes
thus sets up a sort of force field that encourages consistent
spacing without imposing any preconception of what that spacing

ought to be.

The presence of circular or oval notes suggests opportunities to
use polar coordinates. Here, we are moving a square note, and
Tinderbox recognizes that the
note is near a round note, and
that another note is already
nearly equidistant from the
center of that round note.
Releasing the mouse will snap
the dragged note so its distance
from the nearby circle is
identical to the distance

between the circle and the

center of the gray note beneath
it.

Design Note: Kibbitzers vs. Parsers

The ephemeral blue guides that shape the map geometry in
Tinderbox 7 appear simple, almost as simple as the old, rigid grid.
Their impact, however, is subtle, wide-ranging, and not merely

cosmetic. The radial guides, for example, offer a new semantic

The Tinderbox Way 161

meaning for circular and oval notes while inviting their use as the
centerpoint for radial clusters that constitute organized but
informal piles (Figure 9-1). A variety of layouts arise naturally from
simple, local guides; for example, it is natural to organize groups of
notes separated internally by a small (but consistent) space, with
the groups themselves divided by a larger (but also consistent)
space (Figure 9-2).

The use of local guides to set up local geometries was an
alternative to an earlier design that called for a window in which
the user would designate the grid to be used for each map. In
preliminary sketches, the grid design dialog was either inflexible,
giving little control beyond spacing between notes, or became
overly elaborate. Worse, the margins of large maps often hold
legends, prototypes, todo lists, and metadata—clusters of
elements that are not unstructured but that do not share the
geometry imposed on the overall map. Tinderbox maps want to
express local structure, and that structure ought to be permitted
to emerge over time. Just as in actual cities, the grid plan for one

neighborhood may not suit another.

Each time a note moves, a crowded map offers many potential
alignments. The computer must select the alignments it will
suggest from among all conceivable guidelines, and must do so
without impeding the animated motion of the objects being
moved. In practice, that means it has perhaps 1/60 sec (16.7 msec)

to examine the map and suggest potential guidelines.

The first key to implementation is building an efficient
representation that tells us which notes are in any particular

locale. For example, if a guide wants to align our top with the top

162 The Tinderbox Way

of our nearest neighbor, it needs to know which note is closest to
the dragged note’s position. A simple approach would look at each
note in the map and find the closest, but as the number of notes in
the map increases, that becomes too slow. Tinderbox’s data
structure lets us focus only on a subset of notes in the
neighborhood of the dragged note: even in a large and crowded
map, we only need to examine a fraction of the notes in the map
to find the note closest to the cursor.

Each kind of guide is then embodied in a separate advisory object
that we call a kibbitzer3s Whenever a note is dragged, Tinderbox
asks each kibbitzer in turn whether it would like to make a
suggestion. At any given moment, only a few kibbitzers will have
anything to suggest; those that do have a proposal to make are
permitted to draw their proposed guidelines. Individual kibbitzers
are narrowly focused, which makes them simple to write; typical
kibbitzers include:

SquareAspectRatioKibbitzer
VerticalCenterKibbitzer
RightMidpointSpacingKibbitzer
TopAdornmentSpacingKibbitzer

The “top adornment spacing kibbitzer”, for example, focuses only
on notes that are inside an adornment and near its top edge. The
kibbitzer knows how much vertical space should be reserved for
the adornment title, and suggests that the top of the note being
moved should align with the bottom of the space reserved for the

adornment title.

35 Kibbitzer is a Yiddish term for someone who watches a chess or card game and
offers advice.

The Tinderbox Way 163

Ernest
Bevin
Clementine

Clement L
Atlee
Randolph
Walter H.
Thompson

Kingsley
Wood

Anthony
Eden

Jock
Colville

Lord
Beaverbook Lord Moran

Figure 9-1. Radial guides suggest a map
organization in which a central note acquires
a halo of subsidiaries.

Most kibbitzers focus on the moving note’s immediate neighbors.
This limits the number of potential alignments and avoids
presenting a confusing welter of guidelines. Even so, several
different kibbitzers may have differing proposals for the same

coordinate. For example, one kibbitzer might say
“You’re nearly aligned with this note’s top.”
and a different kibbitzer might say

“Your vertical space from the note above you is almost—

but not quite—the vertical space you used nearby.”

Each kibbitzer wants to change the vertical position, but they may
suggest different locations. To resolve this conflict, we assign each

kibbitzer a priority, and though we display all the guidelines only

164 The Tinderbox Way

=] m)
m
o |

I

\ 4

Figure 9-2. Local guides can promote
consistency in syncopated and irregular grids.

the kibbitzers with the highest priority will act on the just-moved

note.

Parsing Patterns

Spatial hypertext researchers have long been interested in
automatically recognizing
and exploiting the sort of
pattern language described
in Chapter 7 (Tinderbox

Maps). For example, the
computer might
automatically recognize an
antisymmetric pair of notes as a higher-level structure. We might
well want to move this pair of notes as a unit, for example, rather

than moving them separately. We might want to act on them as a

The Tinderbox Way 165

unit, to change their color or to update their attributes. The left-
hand member of this part might have rules or actions that depend
on its right-hand counterpart. This pattern might have a specific
semantic meaning; we might use this particular arrangement to
represent an author/title pair, or perhaps to represent mutually-
exclusive policy options. If so, the computer could help us by
automatically recognizing errors in placement or classification,

much as the spelling checker recognizes typographic mishaps.

The first automatic pattern recognition system in a hypertext
environment was Marshall and Shipman’s VIKI, the system that
most directly inspired Tinderbox.36 VIKI called this a spatial parser,
and the spatial parser was the most distinctive feature of VIKI
and its successors. I wanted a spatial parser for Tinderbox, but
held off for two reasons:

- Performance. VIKI and its successors ran on workstations substantially faster
than personal computers, and their users—computer scientists at Xerox PARC,
then the world’s leading research center for computer science—were more tolerant
of minor delays and inconveniences than commercial software users. Lots of
things we want to do with parsers, moreover, either require very clever algorithms
or would perform far more slowly as the document to be parsed grows.

- Finickiness and Failure. When the parser fails to see a pattern we expected it to
recognize, it seldom has a good way to explain why it failed3?. Since the parser
can’t know that we expected it to recognize anything, it has no reason to explain. If
we relax the constraints on the parser, it seems overeager; if we constrain too

36 C. C. Marshall, Frank M. Shipman Ill, and J. H. Coombs, 1994. “VIKI: Spatial
Hypertext Supporting Emergent Structure”. European Conference on Hypertext
ECHT’94.13-23. C. C. Marshall and Frank M. Shipman lll, 1997. “Spatial hypertext
and the practice of information triage”. Proceedings of the Eighth ACM conference
on Hypertext. 124-133.

37 The vagaries of language learning present the same problem. If a proficient
non-native makes a slight error in grammar or pronunciation, it may be easy to
understand what they intended to say. More substantial errors, on the other hand,
can be very puzzling indeed; that there is not mutual understanding is clear, but
how to correct the mistake may be a complete mystery.

166 The Tinderbox Way

tightly, we must do extra work—lining up notes just so—in order to cajole the pars-
er into doing what we want.

In Tinderbox 7, the role typically played by the spatial parser is
instead divided. Kibbitzers handle the housekeeping chores of
recognizing and maintaining alignments, and composites of notes,
formed when two or more notes touch, create meaningful
structures. These structures can, in turn, be repeatedly
instantiated, allowing you to declare that a composite plays a
particular role rather than forcing the parser to deduce what you
intend.

The Tinderbox Way 167

10. Treemaps

Visualization seeks to convey information in ways that take
advantage of human perception. We draw graphs, for example,
because people are better at recognizing the direction of trend
lines than at understanding long lists of numbers. This is a
circumstance that depends on chance and evolution; we can easily
imagine beings that would find it easier to study a list of numbers
than to recognize the direction of a line on the page. Indeed, it is
far more difficult for a computer program to understand the image
of even of most well-drawn stock-market graph than to analyze a
list of closing prices.

Human vision is powerful but its capacity is finite, and when we
consider ways to visualize complex networks of concepts and
observations, we always need to keep in mind the limitations of
computer displays and of human vision. An outline can show us a
useful overview of a document’s hierarchy, but outlines can draw
only only a few dozen notes on the screen at a time. Maps clarify
the relationships among notes, but a map with many notes is
harder to understand than a map with only a few. As we have seen,
the map of Mary-Kim Arnold’s story, “Lust” (Figure4-3) holds only
36 notes and 104 links, yet even this small map is quite difficult to
take in at a glance.

An outline can display more items if we make the type smaller,

and a map can display more items if we reduce its scale, but

168 The Tinderbox Way

Figure 10-1: A freemap view of Those Trojan Girls shows
each note as a separate box.

eventually the type will be too small to see. (Type that is less than
seven or eight pixels high will be illegible, even for people with the
most acute vision.) Larger screens with higher resolution can
increase the amount of information displayed at one time, but
again, human visual acuity will eventually impose its limits. People
cannot read microscopic type, and once the screen fills our visual

field—about 114" —we cannot see the entire view at once.

The treemap view is designed to represent the largest number of
notes, along with their position in the document hierarchy, into
the smallest possible area. To construct a treemap of a Tinderbox

document, we follow this simple procedure:

« The root of the document (or the parent of the the part of the document we want to
examine) is represented by a rectangle that fills the entire available space.

- Each child of the root is assigned a fraction of its parent’s rectangle in proportion to
the number of descendants that child has.

« Each child, in turn, divides its allotted space proportionately among its children.
- If a note’s allotted rectangle is too small to draw, it is omitted.

« We continue until all descendants have been drawn, or until no more notes can be
drawn.

The Tinderbox Way 169

In Figure 10-1, most or all of the 405 pummes e

notes that comprise my hypertext - _
fiction Those Trojan Girls appear oY 7
simultaneously on the screen. In W A e

contrast, my outline view shows 24
notes at a time, and a typical map

Oversight

view shows 19 notes, some of which

are partially OH._SCreen. ’;’l:izt"ecreof o rospects
The compactness of the treemap o | L L L
view is not without disadvantages. Figure 10-2: a small excerpt from

Those Trojan Girls in map view.
Maps show links and visual

space 1S apportioned to one note or attributes, but freemaps can show

many more notes at one time.

Since every pixel of the available

another, there’s no place to draw
links, plots, badges, or summary
tables. In many cases, the available space is inadequate even for

drawing the note title.

In general, Tinderbox arranges treemaps so the first child is near
the top left of its parent rectangle, and the youngest child is near
the bottom right. Tinderbox also tries to ensure that the rectangle
assigned to a note isn’t too narrow or too short; a square note and
a very thin, tall note might have the same area, but the square
note leaves space for a title and is easier to click. In order to find a

good layout and to avoid wasting space when notes don't fit,

170 The Tinderbox Way

Expense Account

Boston Paris London: WatchfulCon
flight to Paris evening dress ‘Oyster Ca| registration ‘ dinner hotel
Tel Aviv Ouarzazate Stavanger
flight: London->Tel ||hotel flight dinner flight
Aviv
lunch

dinner
car rental

hotel

Vienna

clinic Holmbrich Security: retainer hotel

flight

Dijon || Zirich near Como Torino

train m 4

flowers traffic fine
dinner | hotel

hotel return rental
car

Marrakesh
hotel

dinner flight to

Figure 10-3: A treemap of expenses, weighted by the cost of each purchase.

[- I — ‘ Boston

Tinderbox may place move notes in the treemap left or right, up

or down3s.

Weighting Treemaps

Normally, each descendant of a note carries equal weight in the
treemap, and the area of each note is proportional to the number
of its descendants. Often, though, we might prefer to assign

weight to notes based on their properties. In Figure 10-1, the area

of each note is proportional to its word count; this lets us see

38 Treemaps were invented by Ben Shneiderman and his students at the university of Maryland in the early 1990s: Ben
Shneiderman,. “Tree Visualization with Tree-maps: 2-d Space-filling Approach”. ACM Trans. Graph. 11,1, (1902) 92-99. |
learned of them through an early SIGCHI paper:—B. Johnson, “TreeViz: Treemap Visualization of Hierachically Structured
Information”. CHI’92. 369-370. The modern layout algorithm emerged a decade later: B. B, Bederson, Ben Shneiderman,,
and Martin Wattenberg, “Ordered and Quantum Treemaps: Making Effective Use of 2D Space to Display Hierarchies”. ACM
Trans. Graph. 21, 4, (2002) 833-854. The best discussion for the general reader, lavishly illustrated, is Manuel Lima, The

book of trees : visualizing branches of knowledge. Princeton Architectural Press, 2014.

The Tinderbox Way 171

Expense Account
Boston Paris London: WatchfulCon
flight to Paris || lunch car to h| evening dress lunch |[Louvre Oyster | pub lunch registration ||drink:| lunch

dinner hotel

dinner dinner theater

guidebook

power adapter hotel

taxi

Tel Aviv Ouarzazate Stavange!

flight: London->Tel hotel flight dinner flight
Aviv

maps

Dijon Zirich
books train [lunch

taxi to dinner

dinner

toy

hotel rental car: dinner

taxi to h| | taxi to All gas

car rental

Vienna

lunch pharmacy

near Como Holmbrich Security: retainer

et lunch workout clothes

clinic
dinner flight

flowers hotel

breakfast (suppl) Boston

hotel taxi

Torino
flowers BarZ

traffic fine return rental car flight to London | |[Marrakesh

lunch kel lunch Gothenburg

breakfast ‘

Figure 10-4: The expense report from Figure 10-2, weighted by log(SDollars) to
allow us to examine smaller expenses while still giving more space to larger costs.

which chapters are long, which short, and also whether a section

contains a few long notes or many brief ones.

In Figure 10-3, based on the Treemaps chapter of Tinderbox’s
“Getting Started” tutorial, we have a Tinderbox document that
records expenses incurred in a fictional business trip. Large
expenses, such as long plane flights and legal retainers, are
allocated a large space in the treemap, while snacks and sundries

are smaller or are omitted entirely.

While this display draws attention to the largest expenditures, it
doesn’t use space very efficiently: the flight to Paris was costly, but
as a result a large chunk of the treemap is empty space. Instead of
weighting the treemap by $Dollars, the amount spent, Figure 10-4

weights it instead by log($Dollars). Large costs are still given greater

39 To change the weighting of notes in the treemap, set the weight expression in
the treemap tab’s Information popup, which appears on clicking the (D button.

172 The Tinderbox Way

weight, but we now have space to display a far greater range of

items.

Colored Treemaps

We may also choose a color for different notes in the treemap
based on their properties. The Treemap znfo popover lets us

choose:

» An expression to evaluate for each note, returning a numeric

value.

o A start color, which will be applied to notes returning the smallest
values.

 An end color; which will be applied to notes returning the largest

values.

In Figure 10-1, for example, notes with many outbound links are

green, while those with few or no outbound links are beige.

The Tinderbox Way 173

11.Agents

Ephemeral Searches

Tinderbox excels at finding things.

Because Tinderbox offers you lots of ways to organize your notes,
you’re less likely to misplace old notes or to forget what you were
working on last night. Maps provide spatial cues, and though the
placement of a note in a map may be arbitrary; its location with
respect to other notes and to landmarks like adornments helps

you remember where things are.

When searching to relocate information they have seen before,
people often use spatial cues that seem irrelevant and that they
themselves are surprised they remember. When looking for a
quotable passage in a novel, for example, it’s not uncommon for
people to remember approximately where that passage fell on the
page. When searching for a lost memo or a missing book, people
may remember aspects of layout and color long after they last saw
the document.

Outlines provide a different kind of cue. By breaking long lists
into small components, outlines situate things precisely, putting
them where they belong—and where you expect to find them
later.

174 The Tinderbox Way

[JOX) MarkBernstein stub: Find
10f 168 results in this view
Critical Theory for Fun!
to the cheery heroic romances that long dominated
167 other results (168 total)

Neptune's Inferno: The U.S. Navy at Guadalcanal

.. negligent one, a micromanager who approached a..

Eligible

.. dress, at least not romantically: who could be..

SPQR: A History of Ancient Rome

... treatment is that the Romans anticipated modernity...

The Siren and the Sword

charm of the sex scenes. Romance writers have developed

The Peripheral

... strengths: the vision of Neuromancer and much of its lyricism...

Station Eleven

..they go. Planetary romance is the a problem for..

Wool

world - a planetary anti-romance - animated by a clever.

Boy Proof

... the female leads of romantic comedies of the 1930s..

case sensitive Q_Rome|Roman ()
aliases

Figure 11-1. Find in action. Remember that the Find popover can be torn off to
become a window.

Sometimes, though, you might forget where you put a note, or you
may need to find a note in an unexpected context. The Tinderbox
Find palette offers some powerful features that are sometimes
overlooked.

First, remember that you can search for the patterns in the note
name and text, or search specifically in either. You can also search

the contents of a user attribute.

Tip: In documents that depend on lots of attributes, it's easy to forget that
searching Name and Text might not locate the notes you're seeking. For
example, if your bibliographic notes have separate attributes for author
names, those names might not appear in the text at all.
Some punctuation characters have special meanings when
“ »

searching. For example, “.” matches any character, and “$” matches

the end of a paragraph. These special characters are discussed

The Tinderbox Way 175

below (see Regular Expressions). If you want to search for

“»

characters like “.” that have a special meaning in regular

expressions, precede them with a backslash V.

Not. Matches
“Note”
and
“Notify”

Not\. Matches
“ Not. ”

Persistent Searches

Tinderbox agents are persistent searches. Like the Find window;,
they scan your Tinderbox document, seeking a specific text
pattern and identifying notes that match the pattern. Agents can
also look for notes with combinations of properties. But unlike
the Find window, agents remain active in your documents
indefinitely. Agents hold aliases to all the items that currently
match their query.

Agents are notes. Like other Tinderbox notes, each agent has a

name, text, and attributes that control the agent’s appearance and
behavior. Agents have attributes like $Name, $Width and $ChildCount

just like other containers, and these can be viewed and exported.

You can use an agent to create alternate views of a container. For
example, suppose we have a container of notes about movies we
have seen this year. This container happens to be sorted in reverse
chronological order, making it easy to review our most recent

notes and to add new notes.

176 The Tinderbox Way

Films
The Two Towers
Six Degrees of Freedom
Bringing Up Baby
Apocalypse Now

... (many more films)

This may well be the most convenient way to add new notes, but
when we want to look up a specific movie, To Have And Have Not,
we need to scan the entire list. For finding a specific movie, an
alphabetized list would be much easier to use. An agent can easily
build an alphabetically-sorted index:

Agent: Films by Title

Query: inside(Films)

Sort: Name
This index is always up to date; Tinderbox agents run periodically

and update their contents automatically.

Hint: you can toggle File » Update Agents Automatically to enable or
disable automatic agent updates. In older versions of Tinderbox, agent
updates could interrupt other work; because this is no longer an issue, you
might consider returning to automatic updates in existing documents in
which you have disabled them.

You may reduce the priority of particularly complex agents, so they will run
less frequently.

Agent Actions

Like containers, agents may perform actions on notes that they
locate. These agent actions set the values of attributes. For

example:

Query: $Status=="Urgent"

The Tinderbox Way 177

Action: $Color="red":

Note: Tinderbox uses == to test two things for equality, and = to assign a
value.

This agent finds all notes that have been marked as Urgent and
sets their color. Any note that becomes Urgent will be red—and

will remain red until some other action changes the color.

Tinderbox actions are usually very simple, but combining these
simple actions with agent queries turns out to be remarkably
powerful and flexible. Actions are discussed in Chapter 12.

Agents can help discover structure in your notes. It is easy, for

example, to build agents that construct topical categories.

Name: Elizabethan

Query: $Text.contains(Shakespeare)| $Text.contains(Marlowe) |
$Text.contains(Fletcher)

Action: $Drama = true; $Tags = $Tags+ "Exciting"
Here, we collect all notes that mention three Elizabethan

playwrights, we mark these notes as concerning Drama, and we
add the tag “Exciting” to whatever tags the note already has.

" | "

Note: In Tinderbox queries,
‘I means “not’

means “or” and “&” means “and.” The operator

The expression !(SText.contains('lonesco")) is true if the note’s text doesn’t
mention lonesco.

Cooperating Agents

It’s often helpful to let agents use the work that other agents have
already done.

